Altered skeletal muscle (mitochondrial) properties in patients with mitochondrial DNA single deletion myopathy

نویسندگان

  • Saskia Maria Gehrig
  • Violeta Mihaylova
  • Sebastian Frese
  • Sandro Manuel Mueller
  • Maria Ligon-Auer
  • Christina M. Spengler
  • Jens A. Petersen
  • Carsten Lundby
  • Hans H. Jung
چکیده

BACKGROUND Mitochondrial myopathy severely affects skeletal muscle structure and function resulting in defective oxidative phosphorylation. However, the major pathomechanisms and therewith effective treatment approaches remain elusive. Therefore, the aim of the present study was to investigate disease-related impairments in skeletal muscle properties in patients with mitochondrial myopathy. Accordingly, skeletal muscle biopsies were obtained from six patients with moleculargenetically diagnosed mitochondrial myopathy (one male and five females, 53 ± 9 years) and eight age- and gender-matched healthy controls (two males and six females, 58 ± 14 years) to determine mitochondrial respiratory capacity of complex I-V, mitochondrial volume density and fiber type distribution. RESULTS Mitochondrial volume density (4.0 ± 0.5 vs. 5.1 ± 0.8 %) as well as respiratory capacity of complex I-V were lower (P < 0.05) in mitochondrial myopathy and associated with a higher (P < 0.001) proportion of type II fibers (65.2 ± 3.6 vs. 44.3 ± 5.9 %). Additionally, mitochondrial volume density and maximal oxidative phosphorylation capacity correlated positively (P < 0.05) to peak oxygen uptake. CONCLUSION Mitochondrial myopathy leads to impaired mitochondrial quantity and quality and a shift towards a more glycolytic skeletal muscle phenotype.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histochemical And Electron Microscopic Diagnosis Of Mitochondrial Myopathy: The First Case Report From Iran

  Muscle tissue, skeletal muscle as well as cardiac muscle, is commonly affected in mitochondrial disorders. One explanation for this observation is that muscle tissue has a high-energy demand and therefore is more sensitive to a deficiency of mitochondrial energy production than some other tissues. In mitochondrial disorders, skeletal muscle tissue may be affected primarily by defective respi...

متن کامل

Deletions of muscle mitochondrial DNA in mitochondrial myopathies: sequence analysis and possible mechanisms.

Forty per cent of patients with mitochondrial myopathies, a diverse group of multisystem diseases predominantly affecting skeletal muscle and the brain, have large deletions of a proportion of muscle mitochondrial DNA (mt DNA). These appeared to be identical in 13 of 28 cases, contained within the region 8286-13595 bp. Analysis of the deletion junction in two cases showed a 13 nucleotide sequen...

متن کامل

Complex mitochondrial DNA rearrangements in individual cells from patients with sporadic inclusion body myositis

Mitochondrial DNA (mtDNA) rearrangements are an important cause of mitochondrial disease and age related mitochondrial dysfunction in tissues including brain and skeletal muscle. It is known that different mtDNA deletions accumulate in single cells, but the detailed nature of these rearrangements is still unknown. To evaluate this we used a complementary set of sensitive assays to explore the m...

متن کامل

Zidovudine induces molecular, biochemical, and ultrastructural changes in rat skeletal muscle mitochondria.

Zidovudine (AZT) inhibits HIV-1 replication in AIDS. A limiting side effect is AZT-induced toxic myopathy. Molecular changes in a rat model of AZT-induced toxic myopathy in vivo helped define pathogenetic molecular, biochemical, and ultrastructural toxic events in skeletal muscle and supported clinical and in vitro findings. After 35 d of AZT treatment, selective changes in rat striated muscle ...

متن کامل

Disease progression in patients with single, large-scale mitochondrial DNA deletions

Single, large-scale deletions of mitochondrial DNA are a common cause of mitochondrial disease and cause a broad phenotypic spectrum ranging from mild myopathy to devastating multi-system syndromes such as Kearns-Sayre syndrome. Studies to date have been inconsistent on the value of putative predictors of clinical phenotype and disease progression such as mutation load and the size or location ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016